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Abstract— In this paper, we propose a novel image based
visual servoing scheme that imposes prescribed transient and
steady state response on the image feature coordinate errors
and satisfies the visibility constraints that inherently arise owing
to the limited field of view (FOV) of cameras. Visualizing the
aforementioned performance specifications as error bounds, the
key idea is to provide an error transformation that converts the
original constrained problem into an equivalent unconstrained
one, the stabilization of which proves sufficient to achieve
prescribed performance guarantees and satisfy the inherent
visibility constraints. The performance of the developed scheme
is a priori and explicitly imposed by certain designer-specified
performance functions, and is fully decoupled by the control
gains selection, thus simplifying the control design. Moreover, its
computational complexity proves significantly low. It is actually
a static scheme involving very few and simple calculations to
output the control signal, which enables easily its implemen-
tation on fast embedded control platforms. Finally, real-time
experiments using an eye-in-hand robotic system verify the
theoretical findings.

I. INTRODUCTION

Over the last decades, visual servoing has gained a lot
of research interest in motion control systems. In general,
it employs the visual information of a camera as feedback
to determine the required control signal. Structurally, visual
servoing can be classified as: (i) Position-Based Visual
Servoing (PBVS), where the visual features extracted from
the image are used to estimate the 3D pose of the robot wrt
the target; (ii) Image-Based Visual Servoing (IBVS), where
the control inputs are determined directly on the 2D image
plane based on the error of the image features between the
current and desired images, and (iii) Hybrid Visual Servoing,
where 3D PBVS is combined with 2D IBVS [1]–[3]. In this
paper, the IBVS scheme is considered, as it is more efficient
than the other two, owing to its inherent robustness against
camera calibration imperfections.

Since visual servoing is mainly based on visual informa-
tion extracted from the position of the features of interest on
the camera image, a significant issue that reasonably raises
concerns the satisfaction of certain hard visibility constraints,
imposed by the fact that the features of interest should
constantly lie in the camera FOV during the motion of the
camera [4]. Although dealing with hard constraints is very
challenging, various methods have been developed towards
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this direction. More specifically, in [5] and [6] the FOV
constraints are studied under a Model Predictive Control
framework. Furthermore, in [7]–[10] path planning of the
camera motion in 3D space and subsequently projection onto
the image plane are adopted to calculate a camera motion
that does not violate the FOV constraints. Unfortunately,
the aforementioned strategies rely heavily on the knowledge
of 3D reconstruction and camera calibration parameters.
Furthermore, their applicability in fast real-time implemen-
tations becomes questionable, owing to the computationally
demanding optimization processing.

Another important issue associated with IBVS schemes
concerns the transient and steady state response of the closed
loop system. Unfortunately, apart from the [11], in which
the authors assume some bounds on task error, there is
no systematic procedure to accurately impose predefined
transient and steady state performance specifications. To-
wards this direction, the common practice in conventional
IBVS schemes is to tune appropriately the control gains
without, however, any a priori guarantees for the achieved
performance.

In this work, motivated by [12], we propose a novel IBVS
scheme, capable of guaranteeing prescribed transient and
steady state performance as well as satisfaction of the FOV
constraints. Visualizing the performance specifications and
the FOV constraints as error bounds, the key idea is to
provide an error transformation that converts the original
constrained model into an equivalent unconstrained one. It
is then proven that stabilizing the unconstrained model is
sufficient to achieve prescribed performance guarantees and
satisfy the FOV constraints. Moreover, the performance of
the developed scheme is a priori and explicitly imposed
by certain designer-specified performance functions, and
is fully decoupled by the control gains selection. In that
respect, the selection of the control gains is only confined
to adopting those values that lead to reasonable control
effort, thus simplifying further the control design. Finally,
the computational complexity of the proposed scheme proves
considerably low (i.e., it is a static scheme involving very few
and simple calculations to output the control signal), which
makes implementation on fast embedded control platforms
straightforward.

The paper is organized as follows. The model and some
preliminary results, necessary in the subsequent analysis, are
given in Section II. The main results are provided in Section
III. The Section IV presents experimental results. Finally, we
conclude in Section V.
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II. MODEL DESCRIPTION AND PRELIMINARIES

In this section, the mathematical formulation of the image
based visual servoing problem is presented for a pinhole
camera model. Let [Xc, Yc, Zc]

> be the axes of the camera
frame C attached at the center of the camera Oc. The
coordinates of the image frame I are given by [u, v]> with
OI denoting the center of the image, as depicted in Fig. 1.
Notice that the Zc axis of the camera frame is perpendicular
to the image plane transversing OI . In this way, given a set of

Fig. 1: The geometric model of a pinhole camera.

n fixed 3D points Pi = [xi, yi, zi]
>, i = 1, . . . , n expressed

in the camera frame, the corresponding 2D image feature
si = [ui, vi]

>, i = 1, . . . , n are given as follows [13]:

si =

[
ui
vi

]
=
λ

zi

[
xi
yi

]
(1)

where λ is the focal length of the camera (see Fig.1). Thus,
the effect of the camera motion on the feature coordinates at
the image plane is given by:

ṡi = Li(zi, si)V , i = 1, . . . , n (2)

where:

Li (zi, si) =

[
− λ
zi

0 λui
zi

uivi −(1 + u2
i ) vi

0 − λ
zi

λvi
zi

(1 + v2
i ) −uivi −ui

]

is the interaction matrix [13], and

V =

[
T
Ω

]
= [Tx, Ty, Tz, ωx, ωy, ωz]

>

denotes the translational and angular velocities of the camera.
Let us also define the overall image feature vector s =[
s>1 , · · · , s>n

]> ∈ R2n, the time derivative of which is given
by:

ṡ = L(z, s)V (3)

where L (z, s) =
[
L>1 (z1, s1) , · · · , L>n (zn, sn)

]>
is the

overall interaction matrix and z = [z1, . . . , zn]
>. Finally,

owing to the limited field of view of the camera, the image
coordinates are subject to the following visibility constraints:

umin ≤ ui ≤ umax, i = 1, . . . , n (4a)

vmin ≤ vi ≤ vmax, i = 1, . . . , n (4b)

where umin, vmin and umax, vmax are the lower and upper
bounds (in pixels) of the image plane coordinates u, v
respectively. Thus, ensuring that the feature coordinates do
not violate the aforementioned visibility constraints is a
significant issue raised when designing IBVS schemes.

A. Dynamical Systems

Consider the initial value problem:

ψ̇ = H(t, ψ), ψ(0) = ψ0 ∈ Ωψ (5)

with H : R+×Ωψ → Rm where Ωψ ⊂ Rm is a non-empty
open set.

Definition 1: [14] A solution ψ(t) of the initial value
problem (5) is maximal if it has no proper right extension
that is also a solution of (5)

Theorem 1: [14] Consider the initial value problem (5).
Assume that H(t, ψ) is : a) locally Lipschitz on ψ for almost
all t ∈ R+ , b) piecewise continuous on t for each fixed
ψ ∈ Ωψ and c) locally integrable on t for each fixed ψ ∈ Ωψ .
Then there exists a maximal solution ψ(t) of (5) on the time
interval [0, τmax) with τmax > 0 such that ψ(t) ∈ Ωψ, ∀t ∈
[0, τmax).

Proposition 1: [14] Assume that the hypotheses of the
Theorem 1 hold. For a maximal solution ψ(t) on the time
interval [0, τmax) with τmax <∞ and for any compact set
Ω′ψ ⊂ Ωψ there exists a time instant t′ ∈ [0, τmax) such
that ψ(t′) /∈ Ω′ψ .

III. IBVS WITH PRESCRIBED PERFORMANCE

Let us initially define the image feature errors:

eui = ui − u?i , i = 1, . . . , n (6a)
evi = vi − v?i , i = 1, . . . , n (6b)

where u?i , v?i denote the corresponding desired feature va-
lues, as well as the overall error vector:

e = [eu1 , e
v
1, . . . , e

u
n, e

v
n]
> .

The control design is based on the prescribed performance
notion that was proposed to design robust state feedback
controllers, for various classes of nonlinear systems [12],
[15] and [16]. In this work, prescribed performance control
will be adopted in order to achieve: i) predefined transient
and steady state response as well as ii) maintenance of
the features of interest in the camera field of view. More
specifically, prescribed performance is achieved when the
errors eui (t) , evi (t) , i = 1, . . . , n evolve strictly within
a predefined region that is bounded by absolutely decaying
functions of time, called performance functions. The mathe-
matical expression of prescribed performance is given, for
all t ≥ 0, by the following inequalities:

−
¯
Mu
i

¯
ρui (t) < eui (t) < M̄u

i ρ̄ui (t) (7a)

−
¯
Mv
i

¯
ρvi (t) < evi (t) < M̄v

i ρ̄
v
i (t) (7b)

for i = 1, . . . , n, where:

¯
ρui (t) = (1− ρ∞

¯
Mu
i

) exp(−lt) + (
ρ∞

¯
Mu
i

) (8a)

ρ̄ui (t) = (1− ρ∞
M̄u
i

) exp(−lt) + (
ρ∞
M̄u
i

) (8b)

¯
ρvi (t) = (1− ρ∞

¯
Mv
i

) exp(−lt) + (
ρ∞

¯
Mv
i

) (8c)

ρ̄vi (t) = (1− ρ∞
M̄v
i

) exp(−lt) + (
ρ∞
M̄v
i

) (8d)
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are designer-specified smooth, bounded, strictly positive and
decreasing functions of time, selected appropriately to im-
pose the desired transient and steady state response. More
specifically, their decreasing rate, which is affected by the
constant l, introduces a lower bound on the speed of the
convergence of eui (t), evi (t), i = 1, . . . , n. Furthermore, the
constant ρ∞ > 0 can be set arbitrarily small, thus achieving
practical convergence of eui (t), evi (t), i = 1, . . . , n to zero.
Additionally, the constants

¯
Mu
i , M̄u

i ,
¯
Mv
i , M̄v

i , i = 1, . . . , n
are selected appropriately to guarantee that the features
remain inside the camera field of view if (7a)-(7b) are
satisfied. Under the assumption that the features initially lie
in the camera field of view ( i.e., umin < ui(0) < umax
and vmin < vi(0) < vmax, i = 1, . . . , n), we select the
parameters

¯
Mu
i , M̄

u
i , ¯

Mv
i , M̄

v
i as:

¯
Mu
i = u∗i − umin, M̄u

i = umax − u∗i (9a)

¯
Mv
i = v∗i − vmin, M̄v

i = vmax − v∗i (9b)

for i = 1, . . . , n. Apparently, the aforementioned selection
initially ensures that:

−
¯
Mu
i

¯
ρui (0) < eui (0) < M̄u

i ρ̄ui (0) (10a)

−
¯
Mv
i

¯
ρvi (0) < evi (0) < M̄v

i ρ̄
v
i (0) (10b)

for i = 1, . . . , n. Moreover, guaranteeing (7a)-(7b) for all
t ≥ 0 and owing to the decreasing property of

¯
ρui (t), ρ̄ui (t),

¯
ρvi (t), ρ̄vi (t), i = 1, . . . , n, we obtain:

−
¯
Mu
i < eui (t) < M̄u

i , i = 1, . . . , n (11a)
−

¯
Mv
i < evi (t) < M̄v

i , i = 1, . . . , n (11b)

which further leads via (9a)-(9b) to the satisfaction of the
FOV constraints (4a)-(4b) for all t ≥ 0. The aforementioned
statements are clearly illustrated in Fig. 2 for two exponen-
tially decreasing performance functions

¯
Mv
i
¯
ρvi (t), M̄v

i ρ̄
v
i (t)

with
¯
Mv
i , M̄v

i satisfying (9a)-(9b) and ρ∞, l appropriately
selected positive constants imposing the desired transient and
steady state response.

Theorem 2: Consider system (3), the FOV constraints
(4a)-(4b) as well as the image feature errors (6a)-(6b), and
design appropriately the performance functions according to
(9a)-(9b) and the desired transient and steady state perfor-
mance specifications. The control law:

V (s, t) = −kL+E with k > 0 (12)

where L+ is the pseudo-inverse of the interaction matrix,
and:

E =


E1
u

E1
v
...
Enu
Env

 :=



ln(
1+ξu1
1−ξu1

· M̄
u
1 ρ̄

u
1 (t)

¯
Mu

1
¯
ρu1 (t) )

ln(
1+ξv1
1−ξv1

· M̄
v
1 ρ̄

v
1(t)

¯
Mv

1
¯
ρv1(t) )

...
ln(

1+ξun
1−ξun ·

M̄u
n ρ̄

u
n(t)

¯
Mu

n
¯
ρun(t) )

ln(
1+ξvn
1−ξvn ·

M̄v
1 ρ̄

v
n(t)

¯
Mv

n
¯
ρvn(t) )


(13)
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Fig. 2: (a) Graphical illustration of prescribed performance (7b).
(b) Graphical illustration of (4b).

with the normalized feature errors:

ξui =
eui −

M̄u
i ρ̄

u
i (t)−

¯
Mu

i
¯
ρui (t)

2
M̄u

i ρ̄
u
i (t)+

¯
Mu

i
¯
ρui (t)

2

, i = 1, . . . , n

ξvi =
evi −

M̄v
1 ρ̄

v
i (t)−

¯
Mv

i
¯
ρvi (t)

2
M̄v

1 ρ̄
v
i (t)+

¯
Mv

i
¯
ρvi (t)

2

, i = 1, . . . , n

guarantees local practically asymptotic stabilization of the
feature errors as dictated by (7a)-(7b) and thus prescribed
transient and steady state performance without violating the
FOV constraints.

Proof: To prove our concept, we first define the
normalized error vector:

ξ = [ξu1 , ξ
v
1 , . . . , ξ

u
n, ξ

v
n]
> .

Differentiating the normalized feature errors wrt time and
substituting (3), (12) and (13), the closed loop dynamical
system of the ξ may be written as:

ξ̇ = h(t, ξ) (14)

where the function h(t, ξ) includes all terms found at the
right hand side after the differentiation of ξ. Let us also define
the open set Ωξ = (−1, 1)2n. In what follows, we proceed
in two phases. First, the existence of a maximal solution
ξ(t) of (14) over the set Ωξ for a time interval [0, τmax)
(i.e., ξ(t) ∈ Ωξ, ∀t ∈ [0, τmax)) is ensured. Then, we prove
that the proposed control scheme (12) guarantees, for all
t ∈ [0, τmax): a) the boundedness of all closed loop signals
as well as that b) ξ(t) remains strictly within a compact
subset of Ωξ, which leads by contradiction to τmax =∞ and
consequently to the satisfaction of (7a)-(7b) which completes
the proof.

Phase 1: The set Ωξ is nonempty and open. Moreover,
ensuring (10a)-(10b) leads to −1 < ξui (0) < 1 and −1 <
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ξvi (0) < 1, i = 1, . . . , n. Thus we conclude that ξ(0) ∈ Ωξ.
Additionally, h(t, ξ), is continuous on t and locally Lipschitz
on ξ over the set Ωξ. Therefore, the hypotheses of Theorem 1
stated in Subsection II-A hold and the existence of a maximal
solution ξ(t) of (14) on a time interval [0, τmax) such that
ξ(t) ∈ Ωξ, ∀t ∈ [0, τmax) is ensured.

Phase 2: We have proven in Phase 1 that ξ(t) ∈ Ωx, ∀t ∈
[0, τmax) and more specifically that:

ξui (t) ∈ (−1, 1) and ξvi (t) ∈ (−1, 1), i = 1, . . . , n

for all t ∈ [0, τmax). Thus, the transformed errors Eui , Evi ,
i = 1, . . . , n, as defined in (13), are well defined for all
t ∈ [0, τmax) and moreover, it can be easily verified that
eui → 0 implies Eui → ln (1) = 0 and evi → 0 implies Evi →
ln (1) = 0 , i = 1, . . . , n. To proceed, we define, based on
the transformed errors (13), the following task function [17]:

ε = L+E.

Contrary to [17], where L+ is assumed constant, in this work
we consider the general case where L+ is state dependent.
Thus, the time derivative of the task function becomes:

ε̇ =
dL+

dt
E + L+Ė

=
dL+

dt
E + L+

[∂E
∂ξ

(∂ξ
∂e
LV +

∂ξ

∂t

)
+
∂E

∂t

]
(15)

Following [18], we also obtain:

dL+

dt
E = O(e, t)V

where O(e, t) is a 6 × 6 matrix satisfying O(e, t)|e=0 = 0,
∀t ≥ 0. Hence, (15) becomes:

ε̇ =
[
O(e, t) + L+

(∂E
∂ξ

∂ξ

∂e

)
L
]
V + L+

[∂E
∂ξ

∂ξ

∂t
+
∂E

∂t

]
and substituting the control law:

V = −kL+E = −kε

we get:

ε̇ = −k
[
O(e, t) +L+

(∂E
∂ξ

∂ξ

∂e

)
L
]
ε+L+

[∂E
∂ξ
· ∂ξ
∂t

+
∂E

∂t

]
.

(16)
Finally, linearizing (16) for e = 0, we obtain similarly to
[18]:

ε̇ = −kA(t)ε+B(t),

where:

A(t) = L+
(∂E
∂ξ

∂ξ

∂e

)
L
∣∣∣
e=0

(17a)

B(t) = L+
(∂E
∂ξ

∂ξ

∂t
+
∂E

∂t

)∣∣∣
e=0

. (17b)

Notice also that by construction ∂E
∂ξ

∂ξ
∂e is a diagonal positive

definite matrix. Thus, following similar arguments with the
proof of Proposition 1 in [19], we conclude that A(t) =

L+
(
∂E
∂ξ

∂ξ
∂e

)
L
∣∣∣
e=0

is also positive definite. Moreover, it can
be easily verified that the vector B(t) is bounded for all

t ≥ 0 (i.e, there exists a positive constant B̄ such that
||B(t)|| ≤ B̄, ∀t ≤ 0). Hence, we conclude that ε (t) ≤
ε̄ = max

{
||ε(0)||, λmin(A)B̄

k

}
for all ∀t ∈ [0, τmax) in

a neighborhood of e = 0. Moreover, in a neighborhood
of e = 0, we have ||ε|| = ||L+E|| 6= 0 if e 6= 0 or
equivalently if E 6= 0 [20]. Hence, there exists δ > 0 such
that ||ε|| = ||L+E|| ≥ δ||E||, from which we obtain:

||E (t) || ≤ ε̄

δ
, ∀t ∈ [0, τmax). (18)

In this way, taking the inverse logarithmic function in (13),
we get:

− 1 <
¯
ξui < ξui (t) < ξ̄ui < 1, i = 1, . . . , n

− 1 <
¯
ξvi < ξvi (t) < ξ̄vi < 1, i = 1, . . . , n (19)

for all t ∈ [0, τmax), where:

¯
ξui =

1−max
{

1,
M̄u

i

¯
Mu

i

}
exp( ε̄

δ
)

1 + max
{

1,
M̄u

i

¯
Mu

i

}
exp( ε̄

δ
)
,

ξ̄ui =
max

{
1, ¯

Mu
i

M̄u
i

}
exp( ε̄

δ
)− 1

max
{

1, ¯
Mu

i
M̄u

i

}
exp( ε̄

δ
) + 1

¯
ξvi =

1−max
{

1,
M̄v

i

¯
Mv

i

}
exp( ε̄

δ
)

1 + max
{

1,
M̄v

i

¯
Mv

i

}
exp( ε̄

δ
)
,

ξ̄vi =
max

{
1, ¯

Mv
i

M̄v
i

}
exp( ε̄

δ
)− 1

max
{

1, ¯
Mv

i
M̄v

i

}
exp( ε̄

δ
) + 1

.

Finally, it can be easily proven from (13) that the control
input (12) remains also bounded for all t ∈ [0, τmax).

Up to this point, what remains to be shown is that τmax
can be extended to ∞. Notice by (19) that ξ(t) ∈ Ω′ξ, ∀t ∈
[0, τmax), where the set:

Ω′ξ =
[̄
ξu1 , ξ̄

u
1

]
×
[̄
ξv1 , ξ̄

v
1

]
× · · · ×

[̄
ξun, ξ̄

u
n

]
×
[̄
ξvn, ξ̄

v
n

]
is a nonempty and compact subset of Ωξ. Hence, assuming
τmax <∞ and since Ω′ξ ⊂ Ωξ, Proposition 1 in Subsection
II-A dictates the existence of a time instant t′ ∈ [0, τmax)
such that ξ(t′) /∈ Ω′ξ, which is a clear contradiction. There-
fore, τmax =∞. As a result, all closed loop signals remain
bounded and moreover ξ(t) ∈ Ω′ξ ⊂ Ωξ, ∀t ≥ 0. Finally,
from (19) we conclude the satisfaction of (7a)-(7b) for all
t ≥ 0 and consequently guaranteed prescribed performance
without violating the FOV constraints, which completes the
proof.

Remark 1: From the aforementioned proof, it can be
deduced that the proposed IBVS scheme achieves its goals
(i.e., prescribed performance and FOV constraints) without
residing on the need of rendering ε̄

δ arbitrarily small (see
(18)), by adopting an extreme value for the control gain k.
More specifically, notice that (19) and consequently (7a)-
(7b), which encapsulate the prescribed performance notion
and the FOV constraints, hold no matter how large the
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Fig. 3: The experimental setup comprises of a USB camera attached at the end effector of the Mitsubishi PA-10 robot arm observing the
planar target. (a) The initial camera pose. (b) The desired camera pose.

finite bound ε̄
δ is. Thus, contrary to what is the common

practice in the related literature (i.e., the control gains are
tuned towards satisfying a desired performance, nonetheless
without any a priori guarantees), the actual performance
of the proposed IBVS scheme is solely determined by
the performance functions

¯
Mu
i

¯
ρui (t), M̄u

i ρ̄
u
i (t),

¯
Mv
i
¯
ρvi (t),

M̄v
i ρ̄

v
i (t), i = 1, . . . , n. Hence, the selection of the control

gain k is significantly simplified to adopting those values that
lead to reasonable control effort. Finally, the computational
complexity of the proposed scheme proves considerably low.
It is actually a static scheme involving very few simple
calculations to output the control signal, which enables easily
its implementation on fast embedded control platforms.

IV. EXPERIMENTAL RESULTS

To validate the theoretical results and verify the efficiency
of the proposed PP-IBVS scheme, an experiment was
conducted using a Mitsubishi PA-10 7 DoF robotic
manipulator equipped with a calibrated perspective
USB camera observing a planar target, as depicted in
Fig. 3. The target consists of four colored circles the
center of which denotes the feature image coordinates.
The desired pose of the target wrt the camera frame
is p∗ = [0, 0, 0.4, 0, 0, 0]. Thus, the desired feature
coordinates, which were extracted by an image captured
at the aforementioned desired pose of the camera, were
s∗ = [92.5,−92.5,−92.5,−92.5, 92.5, 92.5,−92.0, 92.0].
Finally, the initial pose of the target wrt the camera
frame and the initial feature coordinates were p (0) =
[−0.229, 0.11, 0.518, 0.375, 0.324,−0.497] and s(0) =
[−99.0,−116.5,−197.0,−52,−25.5,−12.5,−123.5, 42.5]
respectively. As mentioned in the previous section the initial
value of the upper and lower performance functions for each
image feature coordinate is chosen such that all features are
retained within the camera FOV. More specifically, for the
following upper and lower bounds of image plane of the

TABLE I

Image Feature Coordinate M̄i
¯
Mi

Feature 1 u 226.5 -411.5
v 331.5 -145.5

Feature 2 u 411.5 -226.5
v 331.5 -146.5

Feature 3 u 226.5 -411.5
v 146.5 -331.5

Feature 4 u 411.0 -227.0
v 147.0 -331.0

considered camera:

umax = 319 umin = −319

vmax = 239 vmin = −239

the parameters M̄u
i ,

¯
Mi, i = 1, . . . , 4 are shown in Table

I. Furthermore, the performance parameter ρ∞ was selec-
ted equal to 5 pixels. Thus, ultimately the center of each
feature will be restrained within a square of 10 pixels edge
around the desired position in the image plane. Finally, the
decreasing rate l was chosen equal to l = 0.45.

As it was expected, the feature coordinate errors were
retained in the corresponding performance areas (see Fig. 4)
and consequently the features were constrained within the
camera FOV as presented in Fig. 5. Finally, the required
control input signals are illustrated in Fig. 6.

V. CONCLUSIONS

This work presents a novel image based visual servoing
scheme that achieves prescribed transient as well as steady
state performance on the image feature coordinate errors and
satisfies the camera field of view constraints. The developed
controller exhibits the following important characteristics.
First, it is of low complexity and thus it can be used
effectively in fast embedded control systems. Additionally,
the a priori guaranteed performance, by certain designer-
specified functions, simplifies significantly the selection of
the controller parameters. Gain tuning is only confined to
achieving reasonable control effort. Finally, future research
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Fig. 4: The evolution of the feature coordinate errors along with
the corresponding imposed performance bounds.
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Fig. 5: The evolution of the features on the image plane. The desired
position of the features on the image plane is denoted by ∗.

efforts will be devoted towards addressing parametric uncer-
tainties on the camera model.
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